
Package: suggests (via r-universe)
September 2, 2024

Type Package

Title Declare when Suggested Packages are Needed

Version 0.1.0

Date 2023-07-14

Description By adding dependencies to the ``Suggests'' field of a
package's DESCRIPTION file, and then declaring that they are
needed within any dependent functionality, it is often possible
to significantly reduce the number of ``hard'' dependencies
required by a package. This package provides a minimal way to
declare when a suggested package is needed.

License MIT + file LICENSE

URL https://github.com/owenjonesuob/suggests

BugReports https://github.com/owenjonesuob/suggests/issues

Imports utils

Suggests covr, testthat (>= 3.0.0)

Encoding UTF-8

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Config/testthat/edition 3

Repository https://owenjonesuob.r-universe.dev

RemoteUrl https://github.com/owenjonesuob/suggests

RemoteRef HEAD

RemoteSha b66346dbbb9c008b82a7b869e809ca46c6c80438

Contents
find_deps . 2
is_installed . 3
need . 4

Index 6

1

https://github.com/owenjonesuob/suggests
https://github.com/owenjonesuob/suggests/issues

2 find_deps

find_deps List places where dependencies are used

Description

A quick-and-dirty diagnostic tool to find dependency usage within top-level expressions (e.g. de-
clared functions) in R scripts within a development package.

Usage

find_deps(path = ".", threshold = NULL)

Arguments

path Path to the base directory of a package.

threshold Only report on dependencies used in fewer than this many top-level expressions.

Details

This might be useful for package developers hoping to use need() in their package, and looking
for good candidates for dependencies which could be moved from Imports to Suggests in the
DESCRIPTION file.

Dependencies are searched for in two ways:

• import() and importFrom() statements in the package’s NAMESPACE file, such as those cre-
ated by @import and @importFrom tags if creating package documentation with roxygen2

• Functions called by using :: or ::: to access a dependency’s namespace directly

This approach isn’t perfect, but it should capture most dependency uses.

Value

A data frame, with one row per distinct top-level expression where a package is used. Packages
used in the fewest places are listed first.

Examples

find_deps(system.file("demopkg", package = "suggests"))

is_installed 3

is_installed Check whether packages are installed

Description

Initially, utils::packageVersion() is used to try to retrieve a version from a package’s DESCRIPTION
file. This is a fast method, but doesn’t categorically guarantee that the package is actually available
to use.

If load = TRUE, then base::requireNamespace() is used to try to load the namespace of each
package in turn. This is much slower, but is the closest we can get to ensuring that the package is
genuinely usable.

Usage

is_installed(pkgs, load = FALSE, lib.loc = NULL)

Arguments

pkgs A character vector of package names. You can check for a minimum version by
appending >=[version] to a package name - see Examples.

load Whether to make sure packages can be loaded - significantly slower, but gives
an extra level of certainty.

lib.loc Passed to utils::packageVersion().

Value

A logical vector of the same length as pkgs, where each element is TRUE if the package is installed,
and FALSE otherwise.

Examples

is_installed("base")
is_installed(c("base", "utils"))

is_installed("base>=3.0.0")
is_installed(c(

"base>=3.0.0",
"utils"

))

4 need

need Declare that packages are needed

Description

Declare that one or more packages are required by subsequent functionality; and if they’re missing,
either prompt the user to install them, or exit with an informative error message.

Usage

need(
...,
msg = NULL,
install_cmd = NULL,
ask = interactive(),
load = FALSE,
lib.loc = NULL

)

Arguments

... Names of required packages, as character strings. You can require a minimum
version by appending >=[version] to a package name - see Examples.

msg Custom message to display; if NULL, an informative one will be constructed.

install_cmd Installation command to run, as a call (i.e. probably wrapped with quote()
or substitute()). If NULL, install.packages() will be used for package
installation.

ask Whether to give the user the option of installing the required packages immedi-
ately.

load Whether to make sure packages can be loaded - significantly slower, but gives
an extra level of certainty.

lib.loc Passed to utils::packageVersion().

Value

Invisibly, any package names from ... which were installed.

Examples

Not run:
need("dplyr")
need("dplyr", "tidyr")

All unnamed arguments will be combined into one list of package names
shared_deps <- c("dplyr", "tidyr")
need(shared_deps, "stringr") # same as need("dplyr", "tidyr", "stringr")

need 5

You can require a minimum version for some or all packages
need("dplyr>=1.0.0", "tidyr")

Typically you'll want to use need() within a function
read_data <- function(path, clean_names = FALSE) {

Call need() as early as possible, to avoid wasted work
if (isTRUE(clean_names))

suggests::need("janitor")

output <- utils::read.csv(path)

if (isTRUE(clean_names))
output <- janitor::clean_names(output)

output
}

You can provide a custom message and/or installation command if needed
need(

"dplyr",
msg = "We need the development version of dplyr, for now!",
install_cmd = quote(remotes::install_github("tidyverse/dplyr"))

)

End(Not run)

Index

base::requireNamespace(), 3

find_deps, 2

install.packages(), 4
is_installed, 3

need, 4
need(), 2

quote(), 4

substitute(), 4

utils::packageVersion(), 3, 4

6

	find_deps
	is_installed
	need
	Index

